Eurocode 7 post BREXIT

Andrew Bond (Chairman TC250/SC7)

Contents

Organizational changes to the 2nd generation Eurocodes

Improvements in EN 1990

Simplification of EQU, STR, and GEO

Catering for non-linearity and coupling

Design cases

Simpler presentation of combinations of actions

Water actions

Management measures to achieve the intended structural reliability

Improvements in 2nd generation EN 1997

No more Design Approaches!

Catering for different groundwater conditions

Separating consequence from hazard

Summary

Organizational changes to the 2nd generation Eurocodes

Eurocode 7 post BREXIT

Organizational changes to the Eurocodes

2nd generation Eurocodes

2nd generation of EN 1990 Contents: old vs new

IACLUI III

EN 1990:2002, 114 pp

- I. General
- 2. Requirements
- 3. Principles of limit state sign
- 4. Basic variables
- 5. Structural analysi Familiar Clause headings
- 6. Verification by the pa

Annex AI Application for build gs

Annex A2 Application for bridges

Annex B^{\ast} Management of structural reliability for construction works

Annex C* Basis for partial factor design and reliability analysis

Annex D* Design assisted by testing

Bibliography

(*informative)

EN 1990:202x, 145 pp

- I. Scope
- 2. Normative references
- 3. Terms, definitions and symbols
- 4. General rules
- 5. Principles of limit state design
- 6. Basic variables
- 7. Structural analysis and design assisted by testing
- 8. Verification by the partial factor method
- Annex A Application rules

Annex B* Management measures ...

Annex C* Reliability analysis and code calibration

Annex D* Design assisted by testing

Annex E* Specific robustness provisions for buildings

Bibliography

2nd generation of Eurocode 7 Reorganization of Eurocode 7 Part 1

2nd generation of Eurocode 7 Reorganization of Eurocode 7 Part 1

Improvements to EN 1990

Eurocode 7 post BREXIT

1st generation of EN 1990 and 1997-1 Verification of ULS

Loss of static equilibrium (limit state 'EQU') is verified using:

This expression caters for combined loss of equilibrium <u>and</u> rupture, which is only mentioned in NOTE 2 to Table A1.2(A) of EN 1990

2nd generation of EN 1990 The 'single-source principle'

Actions from a single source that, owing to physical reasons, induce <u>effects that are strongly correlated with one another may</u> <u>be treated as a single action</u>, even when they originate in, or act on, different parts of the structure, or originate from different materials.

NOTE I This rule is commonly known as the 'single-source principle'. NOTE 2 The single-source principle typically applies to the self-weight of the structure or the ground and of components made of composite materials as well as for water pressures acting on both sides of a structure with flow passing around or underneath.

When verifying loss of <u>static equilibrium</u>, variations in the magnitude or spatial distribution of permanent actions from a single-source should be considered.

2nd generation of EN 1990 Applying single-source/variation from it

2nd generation of EN 1990 Design values of the effects of actions

The design effect of actions Effects now depend on material properties

$$E_{\rm d} = \overbrace{\gamma_{\rm Sd} E\left\{\Sigma(\gamma_{\rm f}\psi F_{\rm k}); a_{\rm d}; [X_{\rm Rd}]\right\}}^{P}$$

For **linear structural systems** and **certain geotechnical structures**, $E_d \max$ be calculated from:

$$E_{d} = \overbrace{E\left\{\left[\Sigma F_{d}\right]; a_{d}; X_{Rd}\right\}}^{F_{d} = \gamma_{F}\psi F_{k}} = \underbrace{E\left\{\sum\left(\left[\gamma_{F}\right]\psi F_{k}\right); a_{d}; X_{Rd}\right\}}_{\gamma_{F} = \gamma_{Sd} \times \gamma_{f}}$$

For **non-linear structural systems** and **certain geotechnical structures**, $E_d \max$ be calculated from:

$$E_{\rm d} = \overbrace{\gamma_{\rm E} E\left\{ \sum F_{\rm rep} ; a_{\rm d}; X_{\rm Rd} \right\}}^{F_{\rm rep} = \psi F_{\rm k}} = \underbrace{\overline{\gamma_{\rm E}} E\left\{ \Sigma(\psi F_{\rm k}); a_{\rm d}; X_{\rm Rd} \right\}}_{\gamma_{\rm E} = \gamma_{\rm Sd} \times \gamma_{\rm f}}$$

EN 1997 specifies the geotechnical structures for which these apply

2nd generation of EN 1990 Design values of resistance

The design resistance $R_d \frac{\text{shc}}{\text{Resistance now depends on actions}}$

$$R_{\rm d} = \frac{1}{\gamma_{\rm Rd}} R \left\{ \frac{\eta X_{\rm k}}{\gamma_{\rm m}}; a_{\rm d}; \Sigma F_{\rm Ed} \right\}$$

 R_{d} may be calculated from (the 'material fac Factors applied to strength

$$R_{d} = R\left\{ \begin{bmatrix} X_{d} \end{bmatrix}; a_{d}; \Sigma F_{Ed} \right\} = \underbrace{R\left\{ \underbrace{\frac{\eta X_{k}}{|\Upsilon_{M}|}}_{\gamma_{M} = \gamma_{Bd} \times \gamma_{m}} \right\}}_{\gamma_{M} = \gamma_{Bd} \times \gamma_{m}}$$

 $R_{d} \xrightarrow{\text{may}} \text{ be calculated from (the 'resistance fa}$ $R_{d} = \frac{R\left\{\overline{X_{\text{rep}}}; a_{d}; \Sigma F_{\text{Ed}}\right\}}{\gamma_{\text{R}}} = \frac{R\left\{\eta X_{\text{k}}; a_{d}; \Sigma F_{\text{Ed}}\right\}}{\left[\frac{\gamma_{\text{R}}}{\gamma_{\text{R}} = \gamma_{\text{Rd}} \times \gamma_{\text{m}}}\right]}$

2nd generation of EN 1990 'Design cases' replace Sets A, B, and C

design case

set of partial factors applied to actions or effects of actions for verification of a specific limit state

Design cases first appear here:

Annex A (normative) **Application rules**

A.I General application and application for buildings

Table A.I.8 (NDP) Partial factors on actions and effects for fundamental (persistent and transient) design situations

Similar tables will appear for other structural types:

- for general application and for buildings, in Annex A.I;
- for bridges, in Annex A.2;
- for towers, masts and chimneys, in Annex A.3;
- for silos and tanks, in Annex A.4;
- for structures supporting cranes and other machineries in Annex A.5;
- for marine coastal structures, in Annex A.6.

2nd generation of EN 1990 Partial factors for buildings/geotechnical structures

Action or effect				Partial factors $\gamma_{\rm F}$ & $\gamma_{\rm E}$ for Design Cases I-4				
Туре	Group	Symbol Resulting effect		Struct- ural	Static equilibrium and uplift*		Geotechnical design	
				DCI	DC2(a) DC2(b)	DC3	DC4	
Permanent	All	γ _G	unfavourable/	1.35 K _F	1.35 K _F		$G_{ m k}$ is	
action (G_k)	Water	$\gamma_{\rm G,w}$	destabilizing	1.2 K _F	1.2 K _F	1.0	not factor-	
	All	$\gamma_{\rm G,stb}$	stabilizing	Set 'B'	^{1.15} Set 'A' ^{1.0}	Set 'C'	ed	
	Water	$\gamma_{G,w,stb}$	stabilizing	used	1.0	used		
	(All)	$\gamma_{\rm G, fav}$	favourable	DA	Table A1.2(A)	DA		
Prestress (P _k)	γ_{P}		See ot	er rel evant Eur ococ	es I-2		
Variable	All	γ _Q		1.5 K _F	1.5 K _F	1.3	1.1	
action (Q_k)	Water	γ _{Q,w}	unfavourable	1.35 K _F	1.35 K _F	1.15	1.0	
	(All)	$\gamma_{Q,fav}$	favourable	0			DA2*	
Effects-of-actions (E)		γ_{E}	unfavourable	effects are not factored			1.35 K _F	
		$\gamma_{E,fav}$	favourable				1.0	
*worse outcome of (a) and (b) applies								

×.

*worse outcome of (a) and (b) applies

2nd generation of EN 1990 New presentation of combinations of actions

EN 1990:2002 uses two different expressions specify combinations of actions, e.g.:

2nd generation of EN 1990 Tabulated presentation of CoAs

Design action	U	Iltimate lir	nit states		Serviceability limit state			es
	Persistent/ transient	Accid- ental	Seismic	Fatigue	Charac- teristic	Frequ- ent	Quasi- perm- anent	Seismi c
Permanent (G _{d,i})	$\gamma_{\rm G,i} G_{\rm k,i}$	$G_{k,i}$	G _{k,i}	G _{k,i}	G _{k,i}	G _{k,i}	G _{k,i}	G _{k,I}
Leading variable (Q _{d,1})	$\gamma_{Q,1}Q_{k,1}$	$\psi_{1,1}Q_{\mathrm{k},1}$ or $\psi_{2,1}Q_{\mathrm{k},1}$	$\psi_{2,i}Q_{k,i}$	Ψ _{2,i} Q _{k,i}	Q _{k,i}	$\psi_{\mathrm{I},\mathrm{I}}Q_{\mathrm{k},\mathrm{I}}$	$\psi_{2,i}Q_{k,i}$	$\psi_{2,i}Q_{k,i}$
Accompanying variable $(Q_{d,i})$	$\gamma_{\rm Q,i}\psi_{\rm 0,i}Q_{\rm k,i}$	$\psi_{2,i}Q_{k,i}$,,.		$\psi_{0,i}Q_{k,i}$	$\psi_{2,i}Q_{k,i}$		
Prestress (P_d)	$\gamma_{P} \boldsymbol{P}_{k}$	P _k	P _k	P _k	P _k	P _k	P _k	P _k
Accidental (A _d)	-	A_{d}	-	-	-	-	-	-
Seismic (A _{Ed})	-	-	A _{Ed,ULS}	-	-	-	-	$A_{Ed,SLS}$
Fatigue (Q_{fat})	-	-	-	$Q_{\rm fat}$	-	-	-	-

2nd generation of EN 1990 Specification of permanent water actions

Actions that arise from water should be classified as permanent, (G_w) , variable (Q_w) , or accidental (A_w) according to the probability that the magnitude of the action will be exceeded.

The representative value of a permanent water action $(G_{w,rep})$ is given by:

$$G_{w,rep} = \begin{cases} G_{w,k,mean} | & (\underbrace{G_{w,k,sup} | G_{w,k,inf}}_{whichever is}) | & G_{w,nom} \\ & & \\ &$$

2nd generation of EN 1990 Specification of variable water actions

The representative value of a variable water action $(Q_{w,rep})$ is given by:

$$Q_{w,rep} = G_{w,rep} + \underbrace{Q_{w,k}}_{=Q_{w,k}|Q_{w,comb}|Q_{w,freq}|Q_{w,qper}}$$

Value of variable water action	Symbol	Probability of exceedance	Return period (years)
Characteristic	Q _{w,k}	2% per annum	50
Combination	$Q_{ m w,comb}$	5% per annum	20
Frequent	$Q_{\sf w, freq}$	1% during design service life	-
Quasi-permanent	$Q_{ m w,qper}$	50% during design service life	-
Accidental	A _{w,rep}	0.1% per annum	1000

2nd generation of EN 1990 Consequence classes, examples, and factors

Consequence class/ Description		Loss of human life*	Economic, social or environ- mental*	Examples of buildings	Factor K _F			
CC4	Highest	Extreme	Huge	Additional provisions can be	needed			
CC3	Higher	High	Very great	Grandstands, large buildings, e.g. a concert hall	1.1			
CC2	Normal	Medium	Considerable	Residential and office buildings, small buildings	1.0			
CCI	Lower	Low	Small	Agricultural buildings, buildings where people do not normally enter, such as storage buildings, etc.	0.9			
CC0 Lowest Very low Negligible				Alternative provisions may be	e used			
*CC is	*CC is chosen based on the more severe of these two columns							

2nd generation of EN 1990 Measures for achieving structural reliability

Measure	Levels*		Description			
Design quality	Design qualification	3	Have the required level of design qualification and experience to perform complex design works			
	and	2	Advanced design works			
	experience levels (DQLs)	I	Simple design works			
Design	Design Check Levels (DCLs)	3	Independent extended checking			
checking		2	Independent normal checking			
		Ι	Self checking			
Execution quality	Execution Classes (EXC)		Defined in execution standards			
Inspection	Inspection Levels (ILs)	3	Independent extended inspection			
during execution		2	Independent normal inspection			
		Ι	Self inspection			
*Required m	*Required minimum level to be given in the National Annex					

2nd generation of EN 1990 Minimum levels vs consequence class

Consequence class	Minimum design quality level	Minimum design check level	Minimum execution class	Min imum inspection level
Higher (CC3)	DQL3	DCL3	See relevant	IL3
Normal (CC2)	DQL2	DCL2	execution and	IL2
Lower (CCI)	DQLI	DCLI	product standards	ILI

Improvements to EN 1997

Eurocode 7 post BREXIT

1st generation of Eurocode 7 Complexity of Design Approaches (Bond & Harris, 2008)

2nd generation of EN 1990 ULS verification incl. non-linear behaviour

Ultimate limit states must be verified using:

$$E_d \leq R_d$$

2nd generation of Eurocode 7 Partial factors for ULS (Bond et al., 2019)

Verific-	Partial factor on		Material fact	Resistance		
ation of			а	b	factor approach	
Overall	Actions/effects	$\gamma_{\rm F}/\gamma_{\rm E}$	DC3 $\gamma_{\rm G} = 1.0, \gamma_{\rm O} = 1.3$			
stability of slopes	Ground properties	ŶΜ	$\gamma_{tan\phi} = \frac{\text{Harmonized cho}}{(MFA only)}$		not rmitted	
	Earth resistance	γ_{Re}	I NUL IA			
Spread foundations	Actions/effects	$\gamma_{\rm F}/\gamma_{\rm E}$	DCI $\gamma_{G} = 1.35 K_{F}$ $\gamma_{Q} = 1.5 K_{F}$	DC3 $\gamma_{G} = 1.0$ $\gamma_{Q} = 1.3$	DC4 γ _Q = 1.1 γ _E = 1.35 K _F	
	Ground properties	ŶΜ	γ_{tan} Nation γ_{cl} (nal choice via MFA or RFA	NDP ored	
	Bearing resistance	$\gamma_{\sf Rv}$	Nation	www.itta.d	1.4	
	Sliding resistance	γ_{Rh}	Not pe	rmitted	1.1	
*Where two	cases (a and b) are give	n, verify	both			

 2^{nd} generation of Eurocode 7 Specification of groundwater pressures Representative groundwater pressure ($F_{w,rep}$) is given by:

If there is insufficient data to derive values on the basis of annual probability of exceedance, $\ldots Q_{w,k}$ and $Q_{w,comb}$ should be selected as a cautious estimate of the worst value likely to occur during the design situation

1st generation of Eurocode 7 Geotechnical Categories are confused!

(14) Geotechnical Category 1 should or

Consequence vely simple structures:

 for which it is possible to ensure that the fundamental requirements will be satisfied on the basis of experience and gualitative geotechnical investigations;

Consequence

(15) Geotechnical Category 1 procedures should be used only where there is negligible risk in terms of overall stability or ground movements and in ground conditions, which are known from comparable local experience Complexity ghtforward. In these cases the procedures gn and construction.

(16) Geotechnical Category 1 procedures should be used only if there is no excavation below the water table or if comparable local experience indicates that a proposed excavation below the water table will be straightforward.

(17) Geotechnical Category 2 should include conventional types o Consequence Complexity loading condi with no exceptional risk or dif

(18) Designs for structures in Geotechnical Category 2 should normally include quantitative geotechnical data and analysis to ensure that the fundamental requirements are satisfied.

(19) Routine procedures for field and laboratory testing and for design and execution may be used for Geotechnical Category 2 designs.

2nd generation of Eurocode 7 Separation of consequence and complexity

2nd generation of Eurocode 7 Geotechnical complexity classes

Comple	exity	General features				
GCC3	Higher	Any of the following applies • difficult soils • difficult geomorphologies • significant thickness of mean and a sliding ground • sliding ground • steep soil slopes • significant geometric variability • significant sensitivity to groundwater conditions • significant complexity of the ground-structure interaction • little experience with calculation models for the current situation				
GCC2	Normal	Covers everything not contained in GCC1 or GCC3				
GCCI	Lower	All the following conditions apply • uniform ground conditions and standard construction technique • isolated shallow foundatic • well established design means and the local conditions and the planned construction technique • low complexity of the ground-structure-interaction				

2nd generation of Eurocode 7 'New' Geotechnical Category = CC x GCC

Consequence	Geotechn	chnical Complexity Class (GCC)				
Class (CC)	Lower (GCCI)	Normal (GCC2)	Higher (GCC3)			
High (CC3)			GC3			
Medium (CC2)		GC2				
Low (CCI)	GCI					

The Geotechnical Category determines:

- minimum amount of ground investigation
- minimum validation of calculation models
- minimum checking of design (EN 1990's Design Check Levels)
- minimum checking of execution (EN 1990's Inspection Levels)
- minimum control of execution (Execution Classes)
- minimum amount of monitoring
- minimum design qualification and experience levels (EN 1990's Designer Qualification Levels)

What about BREXIT?

Eurocode 7 post BREXIT

BSI's place in the international system (Steedman, 2018)

Standards are developed in an international system

Single-standard principle (Steedman, 2018)

Manufacturers want to make one product for multiple markets based on one standard, one test, rather than products for individual markets based on multiple standards and tests Stephen Phipson, CEO, EEF

- Aim to develop a single standard on any given issue:
 - adopted worldwide
 - used voluntarily
- Remove barriers to trade and promote market access
- Ensure business and consumers can influence the development of international standards easily through the NSB

Worldwide reach of the Eurocodes

Summary

Eurocode 7 post BREXIT

Improvements in 2nd generation of EN 1990

- Simplification of EQU, STR, and GEO
 - Improves treatment of combined ultimate limit states
- Catering for non-linearity and coupling
 - Incorporates basis of geotechnical design into EN 1990
 - Better treatment of non-linear structural design
- Design cases
 - Simple packaging of complicated loading conditions
- Simpler presentation of combinations of actions
 - Greater clarity in the text
- Water actions
 - Clear specification of probabilities of exceedance
- Management measures to achieve the intended structural reliability
 - Flexible system that caters for national preferences

Improvements in 2nd generation of EN 1997

Organizational changes to Eurocode 7

- Clearer layout aids ease-of-navigation
- Greater consistency with EN 1990 aids ease-of-use
- No more Design Approaches!
 - Simpler (but not simple) choice of partial factors
- Catering for different groundwater conditions
 - Better specification of groundwater pressures
- Separating consequence from hazard
 - Clear distinction between consequence of failure and complexity of the ground
 - Geotechnical Categories now drive meaningful decisions